首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   225篇
  免费   9篇
  国内免费   1篇
大气科学   10篇
地球物理   54篇
地质学   75篇
海洋学   30篇
天文学   41篇
综合类   1篇
自然地理   24篇
  2020年   6篇
  2019年   2篇
  2018年   5篇
  2017年   4篇
  2016年   8篇
  2015年   5篇
  2014年   4篇
  2013年   7篇
  2012年   3篇
  2011年   10篇
  2010年   11篇
  2009年   8篇
  2008年   5篇
  2007年   7篇
  2006年   14篇
  2005年   7篇
  2004年   10篇
  2003年   6篇
  2002年   9篇
  2001年   7篇
  2000年   3篇
  1999年   4篇
  1998年   4篇
  1997年   3篇
  1995年   4篇
  1994年   7篇
  1993年   2篇
  1992年   1篇
  1991年   3篇
  1990年   4篇
  1989年   2篇
  1988年   4篇
  1987年   2篇
  1986年   1篇
  1985年   3篇
  1984年   8篇
  1983年   1篇
  1982年   5篇
  1981年   2篇
  1980年   5篇
  1979年   4篇
  1978年   3篇
  1977年   4篇
  1976年   1篇
  1975年   3篇
  1974年   1篇
  1973年   3篇
  1972年   4篇
  1970年   4篇
  1958年   1篇
排序方式: 共有235条查询结果,搜索用时 125 毫秒
81.
We continue our programme of extended single-site observations of pulsating subdwarf B (sdB) stars and present the results of extensive time-series photometry to resolve the pulsation spectra for use in asteroseismological analyses. PG 0154+182, HS 1824+5745 and HS2151+0857 were observed at the MDM Observatory during 2004 and 2005. Our observations are sufficient to resolve the pulsations of all three target stars. We extend the number of known frequencies for PG 0154+182 from one to six, confirm that HS 1824+5745 is a monoperiodic pulsator and extend the number of known frequencies to five for HS 2151+0857. We perform standard tests to search for multiplet structure, measure amplitude variations as pertains to stochastic excitation and examine the mode density to constrain the mode degree ℓ.  相似文献   
82.
Rainfall takes many flowpaths to reach a stream, and the success of riparian buffers in water quality management is significantly influenced by riparian hydrology. This paper presents results from hydrometric monitoring of riparian buffer hydrology in a pasture catchment. Runoff processes and riparian flowpaths were investigated on two planar hillslopes with regenerating grass and E. globulus buffers. Surface runoff and subsurface flows (A‐ and B‐horizons) were measured for 3 years using surface runoff collectors, subsurface troughs and piezometers. Water volumes moving through the riparian buffers via the measured flowpaths were ranked B‐horizon ? surface runoff ≈ A‐horizon. Runoff volumes through the B‐horizon troughs were an order of magnitude greater than those recorded for the most productive surface runoff plots or the A‐horizon troughs. Subsurface runoff and saturation‐excess overland flow (SOF) were limited to the winter months, whereas infiltration‐excess overland flow (IEOF) can occur all year round during intense storms. Surface runoff was recorded on 33 occasions, mostly during winter (late May–early October), and total annual surface runoff volumes collected by the 20 unconfined (2 m wide) runoff plots varied between > 80 and < 20 m3. Subsurface flow only occurred in winter, and the 6 m wide B‐horizon subsurface troughs flowed above 1 l s?1 continuously, whereas the A‐horizon troughs flowed infrequently (<6 days per year). In summer, surface runoff occurred as IEOF during intense storms in the E. globulus buffer, but not in the grass buffer. Observations suggest that surface crusting reduced the soil's infiltration capacity in the E. globulus buffer. During winter, SOF and seepage were observed in both buffers, but subsurface flow through the B‐horizon was the dominant flowpath. Key hydrologic differences between the grass and tree buffers are the generation of IEOF in the E. globulus buffer during intense summer storms, and the smaller subsurface runoff volumes and fewer flow days in the E. globulus buffer. Low surface runoff volumes are likely to limit the potential of these buffers to filter pollutants from surface runoff. High subsurface flow volumes and saturated conductivities are also likely to limit the residence time of water in the subsurface domain. Based on their hydrologic performance, the key roles of riparian buffers in this landscape are likely to be displacing sediment and nutrient‐generating activities away from streams and stabilizing channel morphology. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
83.
Declining water quality on the south coast of Western Australia has been linked to current agricultural practices. Riparian buffers were identified as a tool available to farmers and catchment managers to achieve water quality improvements. This study compares 10 m wide regenerating grass and Eucalyptus globulus buffer performance. Surface and subsurface water quality were monitored over a 3‐year period. Nutrient and sediment transport were both dominated by subsurface flow, in particular through the B‐horizon, and this may seriously limit the surface‐runoff‐related functions of the riparian buffers. Riparian buffer trapping efficiencies were variable on an event basis and annual basis. The grass buffer reduced total phosphorus, filterable reactive phosphorus, total nitrogen and suspended sediment loads from surface runoff by 50 to 60%. The E. globulus buffer was not as effective, and total load reductions in surface runoff ranged between 10 and 40%. A key difference between the grass and E. globulus buffers was the seasonality of sediment and nutrient transport. Surface runoff, and therefore sediment and nutrient transport, occurred throughout the year in the E. globulus buffer, but only during the winter in the grass buffer. As a consequence of high summer nutrient and sediment concentrations, half the annual loads moving via surface runoff pathways through the E. globulus buffer were transported during intense summer storms. This study demonstrates that grass and E. globulus riparian buffers receiving runoff from pasture under natural rainfall can reduce sediment and nutrient loads from surface runoff. However, in this environment the B‐horizon subsurface flow is the dominant flowpath for nutrient transport through the riparian buffers, and this subsurface flow pathway carries contaminant loads at least three times greater than surface runoff. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
84.
We report on the discovery of a new short-periodic pulsating variable star in the field of the pulsating sdB star KPD 2109+4401. The star was observed on 10 consecutive nights. Based on the light curves, we detect three pulsation frequencies at 10.308, 4.023 and 11.075 cycle d−1 with amplitudes of 11.1, 4.3 and 4.2 milli-magnitudes, respectively. Using the existing data from other sky surveys, we estimate a spectral type of late F and other atmospheric parameters. Then we discuss the observational properties of the star. Finally it is classified to be a new low-amplitude multiperiodic δ Scuti star. A future interest addressed is to accurately determine the star's spectral type and then to judge a possible link to γ Doradus-type pulsation.  相似文献   
85.
The character and impact of climate change since the last glacial maximum (LGM) in the eastern Mediterranean region remain poorly understood. Here, two new diatom records from the Ioannina basin in northwest Greece are presented alongside a pre-existing record and used to infer past changes in lake level, a proxy for the balance between precipitation and evaporation. Comparison of the three records indicates that lake-level fluctuations were the dominant driver of diatom assemblage composition change, whereas productivity variations had a secondary role. The reconstruction indicates low lake levels during the LGM. Late glacial lake deepening was underway by 15.0 cal kyr BP, implying that the climate was becoming wetter. During the Younger Dryas stadial, a lake-level decline is recorded, indicating arid climatic conditions. Lake Ioannina deepened rapidly in the early Holocene, but long-term lake-level decline commenced around 7.0 cal kyr BP. The pattern of lake-level change is broadly consistent with an existing lake-level reconstruction at Lake Xinias, central Greece. The timing of the apparent change, however, is different, with delayed early Holocene deepening at Xinias. This offset is attributed to uncertainties in the age models, and the position of Xinias in the rain shadow of the Pindus Mountains.  相似文献   
86.
Recumbent folding in eastern Tasmania affected turbidites containing Lower to Middle Ordovician (Bendigonian Be1 to Darriwilian Da3) fossils, but not stratigraphically overlying turbidites containing Silurian (Ludlow) graptolites, and is of a timing consistent with Ordovician to Silurian Benambran orogenesis on the Australian mainland. Two subsequent phases of upright folding post‐date deposition of turbidites containing Devonian plant fossils but pre‐date intrusion of Middle Devonian granitoids, and are of Tabberabberan age. A closely spaced disjunctive cleavage (S2), associated with the first phase of Tabberabberan folding, everywhere cuts a slaty cleavage (S1) associated with the earlier formed recumbent folds. However, refolding associated with development of S2 is not always clear in outcrop and it is proposed that coincident tectonic vergence between the two events has resulted in reactivation of recumbent D1 structures during the D2 event. The transition to rocks not affected by recumbent folding coincides with a marked change in sedimentology from shale‐ to sand‐dominated successions. This contact does not outcrop but, from seismic data, appears to dip moderately to the east, and can only be explained as an unconformity. The current grouping of all pre‐Middle Devonian turbidites in eastern Tasmania into the one Mathinna Group is misleading in that the turbidite sequence can be subdivided into two distinct sedimentary packages separated by an orogenic event. It is proposed that the Mathinna Group be given supergroup status and existing formations placed into two new groups: an older Early to Middle Ordovician Tippogoree Group and a younger Silurian to Devonian Panama Group.  相似文献   
87.
This paper considers the role of stakeholder participation in drawing together the three Rio Conventions, exploring how participatory activities to combat desertification in southern Romania can both support and hinder efforts to conserve biodiversity and mitigate the effects of climate change. It suggests that Romania's growing civil society sector has a potentially vital role to play in promoting synergy through participation, and that participatory processes act as an important mechanism for harnessing multiple benefits. The paper argues that participation needs to be further institutionalised within the Romanian context and in doing so, should emphasise empowerment, equity, trust and learning, integrating different knowledge bases to allow the development of sustainable and synergistic environmental solutions.  相似文献   
88.
Problems in hydrology and water management that involve both surface water and groundwater are best addressed with simulation models that can represent the interactions between these two flow regimes. In the current generation of coupled models, a variety of approaches is used to resolve surface–subsurface interactions and other key processes such as surface flow propagation. In this study we compare two physics-based numerical models that use a 3D Richards equation representation of subsurface flow. In one model, surface flow is represented by a fully 2D kinematic approximation to the Saint–Venant equations with a sheet flow conceptualization. In the second model, surface routing is performed via a quasi-2D diffusive formulation and surface runoff follows a rill flow conceptualization. The coupling between the land surface and the subsurface is handled via an explicit exchange term resolved by continuity principles in the first model (a fully-coupled approach) and by special treatment of atmospheric boundary conditions in the second (a sequential approach). Despite the significant differences in formulation between the two models, we found them to be in good agreement for the simulation experiments conducted. In these numerical tests, on a sloping plane and a tilted V-catchment, we examined saturation excess and infiltration excess runoff production under homogeneous and heterogeneous conditions, the dynamics of the return flow process, the differences in hydrologic response under rill flow and sheet flow parameterizations, and the effects of factors such as grid discretization, time step size, and slope angle. Low sensitivity to vertical discretization and time step size was found for the two models under saturation excess and homogeneous conditions. Larger sensitivity and differences in response were observed under infiltration excess and heterogeneous conditions, due to the different coupling approaches and spatial discretization schemes used in the two models. For these cases, the sensitivity to vertical and temporal resolution was greatest for processes such as reinfiltration and ponding, although the differences between the hydrographs of the two models decreased as mesh and step size were progressively refined. In return flow behavior, the models are in general agreement, with the largest discrepancies, during the recession phase, attributable to the different parameterizations of diffusion in the surface water propagation schemes. Our results also show that under equivalent parameterizations, the rill and sheet flow conceptualizations used in the two models produce very similar responses in terms of hydrograph shape and flow depth distribution.  相似文献   
89.
The impact of three-dimensional subsurface heterogeneity in the saturated hydraulic conductivity on hillslope runoff generated by excess infiltration (so-called Hortonian runoff) is examined. A fully coupled, parallel subsurface–overland flow model is used to simulate runoff from an idealized hillslope. Ensembles of correlated, Gaussian random fields of saturated hydraulic conductivity are used to create uncertainty in spatial structure. A large number of cases are simulated in a parametric manner with the variance of the hydraulic conductivity varied over orders of magnitude. These cases include rainfall rates above, equal and below the geometric mean of the hydraulic conductivity distribution. These cases are also compared to theoretical representations of runoff production based on simple assumptions regarding (1) the rainfall rate and the value of hydraulic conductivity in the surface cell using a spatially-indiscriminant approach; and (2) a percolation-theory type approach to incorporate so-called runon. Simulations to test the ergodicity of hydraulic conductivity on hillslope runoff are also performed. Results show that three-dimensional stochastic representations of the subsurface hydraulic conductivity can create shallow perching, which has an important effect on runoff behavior that is different than previous two-dimensional analyses. The simple theories are shown to be very poor predictors of the fraction of saturated area that might runoff due to excess infiltration. It is also shown that ergodicity is reached only for a large number of integral scales (∼30) and not achieved for cases where the rainfall rate is less than the geometric mean of the saturated hydraulic conductivity.  相似文献   
90.
In mountain, snow driven catchments, snowmelt is supposed to be the primary contribution to river streamflows during spring. In these catchments the contribution of groundwater is not well documented because of the difficulty to monitor groundwater in such complex environment with deep aquifers. In this study we use an integrated hydrologic model to conduct numerical experiments that help quantify the effect of lateral groundwater flow on total annual and peak streamflow in predevelopment conditions. Our simulations focus on the Upper Colorado River Basin (UCRB; 2.8 × 105 km2) a well-documented mountain catchment for which both streamflow and water table measurements are available for several important sub-basins. For the simulated water year, our results suggest an increase in peak flow of up to 57% when lateral groundwater flow processes are included—an unexpected result for flood conditions generally assumed independent of groundwater. Additionally, inclusion of lateral groundwater flow moderately improved the model match to observations. The correlation coefficient for mean annual flows improved from 0.84 for the no lateral groundwater flow simulation to 0.98 for the lateral groundwater flow one. Spatially we see more pronounced differences between lateral and no lateral groundwater flow cases in areas of the domain with steeper topography. We also found distinct differences in the magnitude and spatial distribution of streamflow changes with and without lateral groundwater flow between Upper Colorado River Sub-basins. A sensitivity test that scaled hydraulic conductivity over two orders of magnitude was conducted for the lateral groundwater flow simulations. These results show that the impact of lateral groundwater flow is as large or larger than an order of magnitude change in hydraulic conductivity. While our results focus on the UCRB, we feel that these simulations have relevance to other headwaters systems worldwide.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号